110 research outputs found

    Causally Regularized Learning with Agnostic Data Selection Bias

    Full text link
    Most of previous machine learning algorithms are proposed based on the i.i.d. hypothesis. However, this ideal assumption is often violated in real applications, where selection bias may arise between training and testing process. Moreover, in many scenarios, the testing data is not even available during the training process, which makes the traditional methods like transfer learning infeasible due to their need on prior of test distribution. Therefore, how to address the agnostic selection bias for robust model learning is of paramount importance for both academic research and real applications. In this paper, under the assumption that causal relationships among variables are robust across domains, we incorporate causal technique into predictive modeling and propose a novel Causally Regularized Logistic Regression (CRLR) algorithm by jointly optimize global confounder balancing and weighted logistic regression. Global confounder balancing helps to identify causal features, whose causal effect on outcome are stable across domains, then performing logistic regression on those causal features constructs a robust predictive model against the agnostic bias. To validate the effectiveness of our CRLR algorithm, we conduct comprehensive experiments on both synthetic and real world datasets. Experimental results clearly demonstrate that our CRLR algorithm outperforms the state-of-the-art methods, and the interpretability of our method can be fully depicted by the feature visualization.Comment: Oral paper of 2018 ACM Multimedia Conference (MM'18

    Spin density wave in oxypnictide superconductors in a three-band model

    Full text link
    The spin density wave and its temperature dependence in oxypnictide are studied in a three-band model. The spin susceptibilities with various interactions are calculated in the random phase approximation(PPA). It is found that the spin susceptibility peaks around the M point show a spin density wave(SDW) with momentum (0, π\pi) and a clear stripe-like spin configuration. The intra-band Coulomb repulsion enhances remarkably the SDW but the Hund's coupling weakens it. It is shown that a new resonance appears at higher temperatures at the Γ\Gamma point indicating the formation of a paramagnetic phase. There is a clear transition from the SDW phase to the paramagnetic phase.Comment: 4 pages,8 figure

    Partial Transfer Learning with Selective Adversarial Networks

    Full text link
    Adversarial learning has been successfully embedded into deep networks to learn transferable features, which reduce distribution discrepancy between the source and target domains. Existing domain adversarial networks assume fully shared label space across domains. In the presence of big data, there is strong motivation of transferring both classification and representation models from existing big domains to unknown small domains. This paper introduces partial transfer learning, which relaxes the shared label space assumption to that the target label space is only a subspace of the source label space. Previous methods typically match the whole source domain to the target domain, which are prone to negative transfer for the partial transfer problem. We present Selective Adversarial Network (SAN), which simultaneously circumvents negative transfer by selecting out the outlier source classes and promotes positive transfer by maximally matching the data distributions in the shared label space. Experiments demonstrate that our models exceed state-of-the-art results for partial transfer learning tasks on several benchmark datasets
    • …
    corecore